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Abstract

Peer prediction is the problem of eliciting private,
but correlated, information from agents. By re-
warding an agent for the amount that their report
“predicts” that of another agent, mechanisms can
promote effort and truthful reports. A common
concern in peer prediction is the multiplicity of
equilibria, perhaps including high-payoff equilib-
ria that reveal no information. Rather than assume
agents counterspeculate and compute an equilib-
rium, we adopt replicator dynamics as a model for
population learning. We take the size of the basin
of attraction of the truthful equilibrium as a proxy
for the robustness of truthful play. We study dif-
ferent mechanism designs, using models estimated
from real peer evaluations in several massive on-
line courses. Among other observations, we con-
firm that recent mechanisms present a significant
improvement in robustness over earlier approaches.

1 Introduction
Peer prediction formalizes the challenge of eliciting informa-
tion from agents in settings without verification. Whereas
scoring rules [Gneiting and Raftery, 2007] and prediction
markets [Hanson, 2003; Chen et al., 2007] can be used to
elicit beliefs about observable events (e.g., the outcome of the
U.S. Presidential election), peer prediction addresses settings
without direct access to the ground truth. Consider, for exam-
ple, eliciting information about noise in a restaurant, about
the quality of an e-commerce search algorithm, or the sug-
gested grade for a student’s assignment in an online course,
where obtaining ground truth is either not possible or costly.

The theory of peer prediction has developed rapidly in
recent years. From the simple approach of output agree-
ment [von Ahn and Dabbish, 2004; Waggoner and Chen,
2014], the field has moved to scoring-rule based approaches
with varying knowledge requirements on the part of the de-
signer [Miller et al., 2005; Witkowski and Parkes, 2012a],
later relaxing the requirement of a common prior [Witkowski
and Parkes, 2012b; Radanovic and Faltings, 2013; Kamble
et al., 2015]. These early mechanisms all had uninformative
equilibria, where agents could make reports without looking

at their assigned task, and yet get a higher score than by be-
ing truthful. Several recent papers propose mechanisms that
ensure that truthfulness is not only a strict correlated equilib-
rium, but has higher payoff than certain other strategies.

Jurca and Faltings [2009] discourage strategies where all
agents report identically, by rewarding near-agreement rather
than complete agreement with peers. Radanovic and Falt-
ings [2015] present the logarithmic peer truth serum, with
a large population and many peers performing each task,
comparing an agent’s agreement with their peers to their
agreement with the population as a whole. Dasgupta and
Ghosh [2013] propose a multi-task approach, where each
agent completes multiple tasks, and compare agreement on
overlapping tasks to expected agreement on non-overlapping
ones, showing that truthfulness is optimal for settings with
binary reporting. Shnayder et al. [2016] extend this method
to settings with more than two possible reports.

There is also experimental work on peer prediction. One
study [Gao et al., 2014] showed that Mechanical Turk work-
ers are able to coordinate on an uninformative equilibrium
in some peer prediction mechanisms, while behaving in an
unpredictable way in a design inspired by Jurca and Falt-
ings [2009]. A second experimental study is more positive,
showing that simple scoring mechanisms can encourage ef-
fort, and that workers do not seem to coordinate on uninfor-
mative equilibria [Faltings et al., 2014].1

We adopt replicator dynamics as a model of population
learning in peer prediction mechanisms. Our interest is to
understand the robustness of different designs when, rather
than pre-computing equilibria, participants adjust their be-
havior via a simple dynamic. Learning is widely used to study
behavior in games, giving a useful measure of the likelihood
that various equilibria emerge in repeated play of a mecha-
nism, as well as the stability of those equilibria. Intuitively,
these dynamics capture how players may adjust their behavior
slightly each round depending on the success of their previ-
ous actions. While truthfulness may be an equilibrium of the
game, if learning dynamics steer away from it, one may not
expect to see (long-lasting) truthful behavior in practice.

Analyzing models derived from peer evaluation data in

1A possible reason for the difference in results is that the envi-
ronment in this second study had many possible reports, making it
harder to coordinate.
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several massive online courses, we confirm concerns about
uninformative equilibria in early peer prediction mechanisms:
despite the existence of a truthful equilibrium, learning dy-
namics move toward uninformative equilibria in these mech-
anisms. The learning dynamics still tend toward all partici-
pants adopting the same uniformed report in the approach of
Jurca and Faltings [2009]. In contrast, the multi-task mecha-
nisms do better, with a larger basin of attraction of the truthful
equilibrium. Truthfulness is most stable under the correlated
agreement mechanism [Shnayder et al., 2016], which gener-
alizes the method of Dasgupta and Ghosh [2013], while the
logarithmic peer truth serum [Radanovic and Faltings, 2015]
does not work well unless each task is performed by a com-
paratively large number of agents.

1.1 Case study: Peer grading
To choose realistic parameters for our experimental study, we
use data from peer evaluation in several Massive Open On-
line Courses (MOOCs). Organizations such as edX, Cours-
era, and many others around the world are scaling online
learning to tens of thousands of students per course without a
corresponding expansion in course staff. A key challenge is
to scalably teach topics that are difficult to automatically as-
sess, such as writing, judgement, or design. Peer evaluation
is a promising tool—students submit assignments, which are
evaluated by several peers using an instructor-created rubric.
Peers provide scores as well as written feedback.

In today’s systems, the evaluators are not scored, though
participation can be coupled with being able to see feedback
from their peers. This means that students can (and do) sub-
mit minimal feedback without giving it much thought.2 This
setting fits the peer prediction model—it is expensive for staff
to make “ground truth” evaluations by grading submissions,
and because several peers evaluate each submission, their as-
sessments are naturally correlated and can be compared.

Other research on scalable peer evaluation evaluates stu-
dents’ assessment skills, identifies and compensates for their
biases [Piech et al., 2013], and helps students self-adjust
for bias [Kulkarni et al., 2013]. The Mechanical TA
project [Wright and Leyton-brown, 2015] aims to reduce TA
workload in high-stakes peer grading.

1.2 Background on replicator dynamics
We use one of the simplest models of evolutionary popu-
lation dynamics, which were first introduced to study evo-
lution [Smith, 1972; Sandholm, 2009; Gintis, 2009]. Such
models track segments of a population, gradually adjusting
behavior in response to feedback. Evolutionary dynamics
have been used in many applications besides evolutionary bi-
ology. For example, Erev and Roth [1998] show that learning
dynamics can capture key features of human behavior in eco-
nomic games, and they have many applications in multi-agent
systems [Bloembergen et al., 2015].

Replicator dynamics track a continuous population of
agents playing a game over time, with each agent adopting a

2This is a well-known issue in on-campus peer-evaluation set-
tings as well, though there, instructors can review the feedback and
intervene. In MOOCs, that kind of oversight may not be scalable.

pure strategy and probabilistically switching to higher-payoff
strategies in proportion to the gain in expected payoff. Nash
equilibria are known to be fixed points of replicator dynamics,
but the converse need not hold [Easley and Kleinberg, 2010,
Thm 12.6]. These dynamics also provide an appealing model
for learning at the individual level, as they are a continuous-
time limit of the multiplicative-weights learning algorithm,
and guarantee no regret [Hofbauer et al., 2009, Prop 4.1 and
Prop 6.2]. See Arora et al. [2012] for more about the multi-
plicative weights algorithm.

Replicator dynamics have been used to compute the sym-
metric, mixed equilibria in empirical game theory [Reeves et
al., 2005]. Recently, replicator dynamics have been applied
to assess the likelihood or stability of various equilibria in
games [Panageas and Piliouras, 2014] (see also [Kleinberg et
al., 2011; 2009]). We employ this latter interpretation; specif-
ically, we adopt the basin of attraction of the truthful equilib-
rium, meaning the set of strategy profiles leading eventually
to the equilibrium, as a proxy for how likely and how stable
truthfulness would be under repeated play.

2 Model
There is a continuum of agents, representing a distribution
over strategies observed in the population. At each time t, fi-
nite groups of agents are sampled from this distribution, and
each group is assigned to a particular task (e.g., label an im-
age, evaluate a particular homework submission, judge the
mood of a video clip, etc), which has a hidden type h 2 H .

Each agent i privately observes a signal s
i

2
S={0, 1, . . . , n � 1}, identically and independently dis-
tributed, conditioned on type h. Let Pr(h) denote the type
prior and let Pr(s|h) denote the signal distribution condi-
tioned on type. For simplicity, we assume that the number
of types is equal to the number of signals. For example, in a
peer evaluation setting, the hidden type would be the “true”
quality of a submission, and the signal a student’s assessment
of the quality, both on a scale of e.g. 0, 1, or 2. We as-
sume that Pr(h) and Pr(s|h) are the same for all tasks and
all agents, though the methodology extends to heterogeneous
agent populations with non-identical signal models.

Once the agents observe their signals, they use a strategy,
✓, to compute a report r

i

= ✓(s
i

). In general, ✓ can be
randomized, but we focus on deterministic strategies, rely-
ing on the random sampling from the population for mixing.
A peer-prediction mechanism, without knowing the hidden
type or the observed signals, computes a score �

i

for each
agent based on reports. This score can depend on the re-
ports of peer agents who did the same task, as well as on
the overall set of reports across all tasks. A good scoring rule
leads agents to maximize expected score by truthfully reveal-
ing their signals, and is robust to alternate equilibria as well
as misreports or noise from other agents. A special concern is
to prevent high-payoff, uninformed equilibria, where agents
adopt signal-independent strategies; e.g., “always report 1.”

We represent the population strategy profile as a distribu-
tion x = (x1, . . . , xm

), where x
k

is the fraction of agents
who adopt strategy ✓

k

, and m is the total number of strate-
gies. Let U(k, x) denote the expected payoff from strategy
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✓
k

given population profile x. The average population payoff
is defined as A(x) =

P
m

k=1 xk

U(k, x), leading to the repli-
cator dynamics differential equation:

ẋ
k

= x
k

(U(k, x)�A(x)). (1)

We numerically solve this equation for particular starting
strategy profiles to predict whether the population will tend
toward the all-truthful profile.

2.1 Peer prediction mechanisms
We focus on strictly proper peer prediction mechanisms,
where truthful reporting is a strict correlated equilibrium.

Single-task mechanisms. We first define mechanisms
that only depend on the reports for a single task.

(1) Output Agreement (OA) [von Ahn and Dabbish,
2004]. The system picks a reference agent j for each agent i,
and defines �

i

(r
i

, r
j

) = 1(ri=rj), where 1
x=y

is 1 if x=y, 0
otherwise. The OA mechanism is only strictly proper when
observing a signal s makes s the most likely signal for a ref-
erence agent as well (see Frongillo and Witkowski [2016] for
an elaboration). A useful property of OA is that it is detail-
free, requiring no knowledge of the probabilistic model of the
world.

(2) MRZ. The peer prediction method [Miller et al.,
2005] (MRZ), which uses proper scoring rules [Gneiting and
Raftery, 2007] to achieve strict properness. In MRZ, the sys-
tem gets a report r

i

, picks a reference peer j, and uses a
proper scoring rule R based on the likelihood of r

j

given r
i

.
By the properties of proper scoring rules, this makes truthful
reporting a strict correlated equilibrium. In our experiments,
we use the log scoring rule R(�, o) = log(�

o

), where � is a
probability distribution over outcomes, and o is the observed
outcome. MRZ is not detail-free, as computing � requires
knowledge of the world model.

(3) JF09. A problem with both OA and MRZ is that they
also have uninformative, pure-strategy symmetric Nash equi-
libria, one of which always results in the highest possible
payoff [Jurca and Faltings, 2005]. The JF09 [Jurca and Falt-
ings, 2009] mechanism removes these (pure) Nash equilibria
in binary settings, relying on four or more peers doing a sin-
gle task. To evaluate a report r

i

in a binary signal setting
(S = {0, 1}), the mechanism picks three reference agents,
defines z

i

as the total number of 1 reports among them, and
gives score �

i

(r
i

, z
i

) = M [r
i

, z
i

], where M is the matrix�
0 ↵ 0 ✏

✏ 0 � 0

�
. ↵ and � are set based on the world parameters to

preserve strict properness, while the form of the payoff ma-
trix ensures that if all agents coordinate on 0 or 1, they get
score 0.3 JF09 is not detail free because the designer needs
the world model to compute the score matrix.

Multitask mechanisms. The next two mechanisms are
strong truthful, meaning that all agents being truthful is an
equilibrium with higher payoff than any other strategy profile,
with the inequality strict except for signal permutations.

(4) RF15. The RF15 [Radanovic and Faltings, 2015]
mechanism scores an agent based on the statistical signifi-
cance of the agent’s report compared to the reports of their

3There are no results about mixed equilibria. Our analysis in
Section 3 shows them to be problematic.

peers and the distribution of reports in the entire popula-
tion across multiple tasks. Given report r

i

and the fractions
zpeer, zglobal of reference peers and global population respec-
tively reporting r

i

, the agent’s score is �
i

= log(zpeer/zglobal).
As the number of reference peers goes to infinity, this ap-
proaches log(Pr(r

peer

= r
i

)/Pr(r
i

)).4 RF15 is detail-free.
(5) DG13. The DG13 mechanism [Dasgupta and Ghosh,

2013] is detail-free and multi-task, so each agent reports on
several tasks. It is defined for binary signals. An agent is re-
warded for being more likely to match the reports of peers do-
ing the same task than the reports of peers doing other tasks.

We present a slightly generalized form, parametrized by a
score matrix ⇤. The mechanism is described, w.l.o.g., for two
agents, 1 and 2:

1. Assign the agents to three or more tasks, with each agent
to two or more tasks, including at least one overlapping
task. Let M

s

,M1, and M2 denote the shared, agent-1
and agent-2 tasks, respectively.

2. Let rk1 denote the report received from agent 1 on task k
(and similarly for agent 2). The payment to both agents
for a shared task k 2 M

s

is

�
i

= ⇤(rk1 , r
k

2 )�
n�1X

i=0

n�1X

j=0

⇤(i, j) · h1,i · h2,j ,

where ⇤ : {0, . . . , n�1}⇥{0, . . . , n�1} ! R is a score
matrix, h1,i =

|{`2M1|r`1=i}|
|M1| is the empirical frequency

with which agent 1 reports signal i in tasks in set M1,
and h2,j =

|{`2M2|r`2=j}|
|M2| is the empirical frequency

with which agent 2 reports signal j in tasks in set M2.
3. The total payment to an agent is the sum of the payments

across all shared tasks.
In the DG13 mechanism, ⇤ is the identity matrix (‘1’ for

agreement, ‘0’ for disagreement.) For binary signals and pos-
itive correlation between signals, DG13 is strong truthful.

(6) DGMS. Shnayder et al. [2016] extend the DG13 mech-
anism in two ways. The first is DGMS, the direct exten-
sion of DG13 to multiple signals, using the identity matrix
for scoring. DGMS is strong truthful when the world sat-
isfies a categorical property, where, given an agent’s signal,
the likelihood of peers having any other signal goes down:
Pr(s0|s) < Pr(s0) for all s0 6= s; this property holds trivially
for binary signal models with positive correlation.

(7) Correlated Agreement (CA). The second extension
of DG13 yields the CA mechanism, which adopts a differ-
ent scoring rule. Rather than the identity matrix, CA sets
⇤(i, j) = 1 if Pr(s

j

|s
i

) > Pr(s
i

), and 0 otherwise; it re-
wards agreement on positively correlated signals. CA reduces
to DGMS in categorical settings. In general settings, it is
proper (not strictly), and informed truthful. The payoff for
truthfulness is weakly higher than any other strategy profile,

4Because log is non-linear, the expected score with a finite num-
ber of reference peers is lower than this limit, even in a continuous
population, and this affects the attractiveness of different strategies.
We examine this effect in Section 3.
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and strictly higher than any uninformed, signal-independent
reporting strategy. CA only requires that the designer know
the direction of correlation between pairs of signals, not the
entire world model.

2.2 Strategy selection
To fully define the replicator dynamics, we need to instantiate
a finite set of strategies available to the population. In mech-
anisms where agents do multiple tasks per round, each agent
uses the same strategy for each task. We omit permutation
strategies, which exchange the names of signals in a 1-to-1
mapping, from our analysis. These are unnatural in practice,
and do not give higher payoffs than the remaining strategies
in the mechanisms we study.

With two signals, the remaining pure strategies are const0,
const1, T, corresponding to agents always reporting 0, 1, or
being truthful, respectively. For three or more signals, there
are more strategies possible, and we include the monotonic
strategies that overreport, underreport, or merge adjacent sig-
nals, using const0, const1, const2, merge01, merge12, bias+,
bias-, T. merge01 reports 0 for signals 0 and 1. merge12 re-
ports 1 for signals 1 and 2. bias+ over-reports, mapping sig-
nal i to min(i+1, n� 1). bias- maps i to max(i� 1, 0). For
four signals, we add mergeAdj, which reports 0 for signals
0 and 1, and 2 for signals 2 and 3. For five signals, we add
mergeEach3 which rounds down to the nearest multiple of
three. The merging strategies lose information and increase
the frequency of agreement, and are an intermediate step be-
tween truthfulness and constant reports.

As a simple model of effort, we distinguish between in-
formed and uninformed strategies. An informed strategy de-
pends on the agent’s signal. In contrast, constant strategies
such as const1 are uninformed. The distinction reflects that
it takes effort to obtain a signal, so informed misreporting
strategies are less appealing to agents than uninformed ones.

For certain strategy profiles and mechanisms, there may be
multiple strategies with equal payoff. When there is a tie be-
tween truthfulness and another informed strategy, we believe
it is natural for agents to be truthful— it is simpler because
it does not require strategic reasoning, while the effort of sig-
nal acquisition is needed either way. To model this, we add
a tiny cost to the expected payoffs for non-truthful informed
strategies, so as to break such ties in favor of truthfulness.5

2.3 World models
Our initial qualitative analysis compares the mechanisms in
four world models, selected to illustrate common scenarios;
the worlds vary the correlation between agent signals and in-
clude bias toward particular values (Figure 1).

3 Replicator dynamics of peer prediction
Starting with the single-task mechanisms, we show that in
OA, MRZ, and JF09, non-truthful equilibria are attractors of
replicator dynamics and the basin of attraction of truthfulness
is small.

5The consequence for replicator dynamics is that areas of the
strategy simplex where the derivative between truthful and another
informed strategy was exactly zero now tend toward truthful.

World Pr(h) Pr(s|h) Description

W2a [0.5, 0.5]
✓

0.8 0.2
0.1 0.9

◆
Strong correlation

W2b [0.5, 0.5]
✓

0.4 0.6
0.1 0.9

◆
Bias toward 1

W3a [0.3, 0.3, 0.4]
0

@
0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

1

A Unbiased noise

W3b [0.3, 0.3, 0.4]
0

@
0.5 0.4 0.1
0.4 0.5 0.1
0.1 0.1 0.8

1

A 0 and 1 correlated

Figure 1: Our manually selected world models.
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Figure 2: Replicator dynamics in OA for different initial strat-
egy distributions. Even when a large fraction of the popula-
tion starts out truthful, the dynamics can converge to all-ones
or all-zeros uninformative equilibria.

3.1 Single task mechanisms
We first look at the replicator dynamic for OA in the W2a
world (Figure 2). This illustrates replicator dynamics for dif-
ferent initial values. At least half the population starts out
truthful in each plot, but the dynamics can still converge to an
uninformative strategy where all agents say 0 or 1.

It is difficult to understand the overall dynamics of a mech-
anism from plots of strategies versus time, because each only
shows a particular starting point. A better visualization for
analyzing convergence is a flow plot of the derivatives of the
replicator equation, as shown in Figure 3. The area in green
shows the basin of attraction, the set of starting points from
which the dynamics converge to truthful play (the bottom-left
corner). From the plots for W2b, we see that OA is not strictly
proper, and that the all-0 and all-1 corners are much stronger
attractors than truthfulness for MRZ.

From the JF09 plots, we can clearly see that even though
the (1, 0) and (0, 1) corners are not equilibria, there are still
attractors very nearby. This illustrates how replicator dynam-
ics complement equilibrium analysis, showing that the pure-
strategy-only theoretical guarantees of JF09 are not robust.

3.2 Multi-task mechanisms
Multi-task mechanisms leverage reports across multiple tasks
to make coordination on uninformed behavior less attractive
to agents. We first confirmed that constant reporting is longer
an attractive strategy in replicator dynamics under DG13 and
RF15 for any binary world with correlated signals, including
W2a and W2b. Instead, the basin of attraction of truthful play
covers the entire strategy simplex.

However, for RF15, this is in the large-population limit, as
both the total population and the number of reference peers
for each task go to infinity. Figure 4 shows what happens
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Figure 3: Flow plots of the derivative of the replicator equa-
tion (Eqn 1) for W2a and W2b, with OA, MRZ, and JF09.
The all-truthful strategy profile is at (0, 0), with its basin of
attraction shown by the green shaded area. OA is not truthful
for W3. Even when the mechanisms are truthful, the basins
of attraction can be quite small.
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Figure 4: RF15 with finite sets of peers. The non-linearity
of the log function makes RF15 far less robust with small
numbers of peers, with much smaller basins of attraction for
truthfulness.

when the population is large (formally, a continuum), but the
number of peers per task is finite. We see that a large group of
reference peers is needed for RF15 to behave as in its limit—
even with 16 peers, the non-linearity of the log function in the
definition of the score rule makes constant reporting attractive
if enough of the population agrees. Going forward, when us-
ing RF15 with a finite number of reference peers we fix this
number to three and study RF15-3-peer; for motivation, con-
sider that it is typical for 3-5 students to assess a peer’s work
for peer assessment in online courses.

We now look at settings with more than two signals, and
examine the recent extensions of DG13 to multi-signal set-
tings. The strategy space quickly grows, so we cannot vi-
sualize the full basin of attraction in the same way. Instead,
we first consider T along with two non-truthful strategies at
a time, looking to develop qualitative understanding through
representative examples. We will then adopt a quantitative
metric, which estimates the basin size for more than three
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Figure 5: Flow plots for W3a, a categorical world, and W3b,
a non-categorical one. merge01 is the highest payoff strategy
under DGMS, and is a strong attractor.
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Figure 6: Flow plots for W3a, now using the bias+ and bias-
strategies. The difference in the basins of attraction com-
pared to the top row of Figure 5 shows the limitations of two-
dimensional flow plots in a many-strategy setting.

strategies by sampling.
First we compare W3a, a categorical three-signal model,

and W3b, a non-categorical model, showing dynamics for
merge01, merge12, and T (Figure 5). For W3a, the CA and
DGMS mechanisms are identical, and both converge to truth-
fulness from a large set of starting values. For W3b, merge01
has higher payoff than T under DGMS, and the dynamics
converge to merge01 from almost the whole space.6 Figure 6
parallels the W3a plots just discussed, but now adopting dif-
ferent strategies. Here, the basins of attraction for truthfulness
are smaller. This illustrates the need to examine many com-
binations of strategies to understand a mechanism’s behavior.

4 Peer assessment in MOOCs
Our qualitative analysis suggests that the RF15 and CA are
robust across a range of strategies and models, while non-
truthful strategies can be attractors for OA, MRZ, and JF09.
We now examine these patterns quantitatively on realistic
world models. We study 325,523 peer assessments from 17
courses from a major MOOC platform. These comprise 104
questions, each with a minimum of 100 evaluations. There
are 9, 67, 25, and 3 questions with 2, 3, 4, and 5 signals,
respectively. We use maximum likelihood estimation to gen-

6CA gives equal payoff for T and merge01. The tiny boost to
truthfulness described in Section 2 breaks the tie toward the truthful
corner.
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Figure 7: Dynamics with many strategies. We cannot easily
visualize the many-dimensional simplex, but can sample to
estimate the size of the basin of attraction of an equilibrium.

erate a probabilistic model, Pr(h) and Pr(s|h), for each ques-
tion.

We base our model fit on student reports, not the unobserv-
able signals, which are not available. For the current work, in
the absence of better data sets, we will simply stipulate that
these are representative of true world models. This gives us
a set of observed, non-hand-selected distributions, and pro-
vides a systematic way to compare the performance of the
various mechanisms. Our analysis remains robust as long as
the observed reports do not vary too much from the true sig-
nals learners would get if they all invested effort. We believe
that as MOOCs start to provide valuable credentials based
on peer-assessed work, there will be more incentive to cheat,
and this condition may no longer hold without explicit credit
mechanisms for peer assessment.

To ensure that our earlier observations were not specific
to the particular strategies chosen for each plot, we look at
dynamics with many strategies at once. For a qualitative ex-
ample, see Figure 7, which shows an example for W3b and
CA, now with eight strategies. Despite the small fraction of
the population starting out truthful, the dynamics converge to
the truthful equilibrium.

To quantitatively compare the mechanisms, we estimate
the size of the basin of attraction of truthfulness for each
question and mechanism pair: we choose 100 starting strat-
egy profiles uniformly at random in the strategy simplex, and
measure the percentage for which the dynamics converge to
truthful. We exclude JF09 because it is only defined for bi-
nary signals while the MOOC models have up to five signals.
For each model, we use the corresponding strategy set from
Section 2.7

This gives us a distribution of 104 basin sizes for each
mechanism, shown as box plots in Figure 8. DGMS basin
sizes span a large range because many of the estimated mod-
els are non-categorical. The CA and RF15 mechanisms have
the most robust performance. However, recall that RF15 is
defined in the limit as the number of peers per task grows
large, and is thus not a good fit for this domain. RF15-3-peer,
which is a better match for the domain, does not do as well.

7Due to computational limitations in simulating RF15-3-peer,
we do not include the full strategy set in its analysis, using only
const0,const1,mergeAdj,bias-,T. Our comparison thus favors RF15-
3-peer, as other potentially attractive strategies are excluded.
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Figure 8: For each mechanism on the horizontal axis, and
each of 104 MOOC-based world models, we estimate the size
of the basin of attraction of T (as a fraction of the full space,
on the vertical axis) for that world. The result is a distribution
of 104 basin sizes for each mechanism, which we illustrate
with a box plot above each mechanism name. The results
match our earlier qualitative analyses.

The CA mechanism appears promising in terms of its ability
to robustly promote the convergence of population learning
strategies to informed, truthful play.

5 Conclusions
Replicator dynamics provide a good complement to equilib-
rium analysis and experiments for studying peer prediction
mechanisms. Our analysis confirms that single-task mecha-
nisms such as OA, MRZ, and JF09 can be very unstable with
a learning population, even when being truthful is an equi-
librium.Newer, multi-task mechanisms (DG13, DGMS and
CA), on the other hand, are much better at avoiding unin-
formative equilibria. The analysis also supports the need for
large peer-group sizes with RF15, a point already made in
Radanovic and Faltings [2015].

We show that CA, in particular, is a promising candidate
for real applications. Given over 100 distributions from peer
assessment data, we can have some confidence that our find-
ings will generalize; although distributions for other applica-
tions will differ, the size of the differences between the mech-
anisms suggest that our qualitative findings will be robust.

This analysis can be extended in various directions. We
assume the same world model over many rounds of learning,
for example, which may not apply if the types of tasks change
over time (imagine different homework assignments during
a course). In addition, replicator dynamics ignores variance
and small-population effects. Also of interest is the behavior
of peer-prediction mechanisms with more complex models
of human learning from behavioral economics or cognitive
neuroscience. Finally, there is a need to validate these results
with real people, in the lab, in real online courses, or in other
crowdsourcing applications.
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